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Abstract: This work demonstrates wafer-scale, path-independent, 
atomically-based long term-stable, position nanometrology. This 
nanometrology optical ruler imaging system uses the diffraction pattern of 
an atomically stabilized laser from a microfabricated quasiperiodic aperture 
array as a two-dimensional optical ruler. Nanometrology is accomplished by 
cross correlations of image samples of this optical ruler. The quasiperiodic 
structure generates spatially dense, sharp optical features. This work 
demonstrates new results showing positioning errors down to 17.2 nm over 
wafer scales and long term stability below 20 nm over six hours. This work 
also numerically demonstrates robustness of the optical ruler to variations in 
the microfabricated aperture array and discretization noise in imagers. 
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1. Introduction 

Tip-based nanofabrication, such as dip-pen writing or thermal surface modification, is a 
promising technology that will enable future computational and sensor/actuator technologies. 
In addition, scanning probe microscopy is critical to semiconductor device process 
characterization and development as future electronic transistors are scaled to tens of 
nanometers. However, the success of nanoscale devices utilizing tip-based nanofabrication or 
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scanning probe metrology will rely critically on fast, precise, and long-term stable 
nanometrology of nanoscale features at length scales varying up to seven orders of magnitude. 
State-of-the-art capacitive sensors and strain sensors lack long travel range, and high precision 
optical encoders require a large reflective block which limits the frequency of movement. The 
resulting technological roadblock is the inability for a scanning probe microscope to quickly 
return to the same location after moving distances as large as tens of microns, much less an 
entire wafer. Consequently, time is laboriously spent searching for nanoscale features, 
limiting the throughput of nano-science and technology. 

 

Fig. 1. Nanometrology Optical Ruler Imaging System schematic: An external cavity laser is 

frequency stabilized within 6 MHz, or a relative accuracy of 1.5 × 10−8, to a saturated 
resonance (F = 2 to 1) of the D2-line of 85Rb. A 22.77 ± 0.03 °C temperature stabilized 
microfabricated Penrose vertices grating diffracts the laser beam (fabricated using ebeam 
lithography on SOI device layer; device layer Si etch; through carrier wafer backside KOH 
etch; buffered HF release; Ti/Au evaporation). A wafer-scale optical ruler is shown. Tip/CMOS 
imager is mounted on a commercial stage. Upsampled Fourier transform cross correlation 
calculates the CMOS imager position within the optical ruler. 

A basic idea for the Nanometrology Optical Ruler Imaging System (NORIS) was 
presented earlier [1]. NORIS uses an atomically stabilized laser as a stable base for metrology. 
The laser wavelength can be stabilized down to parts per billion over long times by locking 
the laser to an alkali atom absorption feature, as is similarly done in atomic clocks. The 
wavelength-stabilized laser beam is diffracted by a micropatterned metal thin film grating, 
which projects a diffraction pattern over the wafer-scale workspace and acts as a precise, 
accurate, and stable optical ruler. Using a quadrature photodiode, an analogue proportional-
integral-differential control loop was used to position the photodiode on the center of peak in 
the optical ruler. Marks were made in poly(methyl methacrylate) at points corresponding to 

the optical ruler. The work resulted in a precision of ± 3 × 10
−4

 precision over a 75 mm wafer. 
However, the earlier implementation used a periodic grating aperture array, resulting in a 

hexagonal lattice diffraction optical ruler. In this work, a quasiperiodic pattern is used in the 
diffraction grating, which generates denser features than periodic or randomly generated 
patterns. Using such a pattern yields much greater precision than using a periodic structure. 
The system is described in detail elsewhere [2], but we show a schematic for recall in Fig. 1. 
This work demonstrates stability of 20 nm over six hours and precision down to 17 nm. We 
numerically demonstrate the robustness of the precision against low resolution analog-to-
digital conversion of the image sampling, and against defects or variations in the 
microfabricated quasiperiodic aperture array. 
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2. Quasiperiodic diffraction 

The optical ruler is generated by the diffraction of an atomically stabilized laser beam by a 
microfabricated metal thin film. In the far field, or Fraunhofer, diffraction region the 
amplitude of the diffracted optical field is given by, 

 ( ) ( ) ( ) ( )
2 2

/2
, , / ( ) , exp 2 / ( ) ,

ik x y zikz
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where the amplitude U is calculated at position (x,y,z) due to the diffraction of amplitude U at 
(ξ,η) by an optical field of wave vector k and wavelength λ [3]. The first factor decreases the 
optical power density as the optical field diffracts away from its origin. The second factor 
corresponds to a decrease in the optical field away from its center. The diffraction pattern will 
have more optical power towards the center of the image, and the optical power will generally 
decay towards the outer parts of the diffraction pattern. The double integral contains the 
information for the features in the diffraction pattern, a critical component in achieving high 
precision in NORIS. 

The double integral in Eq. (1) is a Fourier transform of the amplitude U(ξ,η) at the 
diffraction plane. If the amplitude is constant across the aperture array, the double integral is a 
Fourier transform of the geometric shape of the aperture array where the openings are a 
constant intensity and the nontransmitting regions are zero. In order to maximize the precision 
of the NORIS system, a diffraction pattern, or optical ruler, is needed whereby image cross 
correlation techniques can be used to yield the highest precision in the estimates of 
displacement. The precision can be estimated based on the mean square error of the image 
registration at some offset r [4]. The lower bound of the mean square error is given by the 
Cramér-Rao bound, 

 1( ) ( ),MSE J
−≥r r   (2) 

assuming an unbiased estimator, where the Fisher information matrix J is, 

 ( ) 2[ (log ) / ( )],
i jij

J E f= − ∂ ∂ ∂  r r r   (3) 

which is the negative expectation value of the partial derivatives of the log of the likelihood 
function. Here, the likelihood function refers to the image registration, or the calculation of 
the translational offset of two images. 

As might be expected, Eqs. (2) and (3) show that high precision in image registration will 
be achieved by using images with large amounts of image gradient. It is desired that the 
optical ruler contain image gradients that are unique across the whole image so that image 
registration will see high gradient features of different directions. This will result in high 
contrast in the cross correlation, resulting in higher image registration precision. Therefore, 
we are looking for a diffraction array that generates very dense, very sharp features across the 
optical ruler area. In addition, a diffraction pattern that is translationally asymmetric resulting 
in unambiguous positioning across a large area is desired. 

An interesting solution can be found by considering different types of periodicity for the 
diffraction aperture arrays. To simplify the analysis, we consider one-dimensional diffraction. 
First, consider a periodic structure. The screen is opened periodically by an aperture of 
constant width, which in practice is constrained by fabrication limits. Therefore, the 
diffraction plane amplitude U(ξ,η) is a periodic array of rect functions. As expected from the 
readily available analytical solution, the diffraction pattern or Fourier transform of the screen 
aperture is a sum of shifted sinc functions. The diffraction pattern is a number of peaks with a 
decaying, periodic envelope of the intensity which decays away from the center of the 
diffraction pattern. In Fig. 2, we show the one-dimensional diffraction pattern from a periodic, 
seven aperture screen. A Fourier transform is used to estimate the resulting diffraction pattern. 
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Fig. 2. One dimensional diffraction pattern from a seven element, periodic aperture array, 
estimated by a Fourier transform. The resulting pattern, a sum of sinc functions, results in 
evenly spaced peaks with an intensity envelope. 

Figure 2 shows a number of peaks that are periodic, limited by the bandwidth of the 
aperture array. However, despite the spatial bandwidth available there are regions where there 
is an apparent lack of features: that is, having no optical gradient. We would like to decrease 
the mean square error of image registration shown in Eq. (2) by increasing the optical 
gradients across the one dimensional image. As a first attempt, randomness is introduced to 
the aperture array. Rather than periodically placing the apertures, their locations are randomly 
shifted. The resulting diffraction pattern is shown in Fig. 3. While some smaller intensity 
structure has appeared, there are number of large peaks that were clearly visible in the 
periodic case that have completely disappeared. The incoherent shifts in the aperture 
positions, i.e. white background noise, also slightly raises the noise floor of the diffraction 
pattern resulting in less signal-to-noise ratio of the peaks overall. 

 

Fig. 3. One dimensional diffraction pattern from a seven element, aperiodic aperture array in an 
attempt to increase features in the diffraction pattern. The aperture positions are nearly 
periodic, located at slight displacements from their periodic locations in Fig. 2. Some low 
intensity structure appears to emerge, but some of the larger structures seen in the periodic case 
have disappeared. 

 

Fig. 4. One dimensional diffraction pattern from a seven element, quasiperiodic structure based 
on the Fibonacci sequence. Comparing this diffraction pattern to that in Fig. 2, we see that 
already several new peaks are introduced, some marked by arrows. The increase in sharp 
features increases the precision of NORIS. 

Finally, we consider a quasiperiodic structure. Figure 4 shows the resulting one 
dimensional diffraction pattern from a quasiperiodic aperture array with equal bandwidth as 
the periodic case in Fig. 2. Rather than displacing the periodic structure by random shifts, they 
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are positioned based on the quasiperiodic Fibonacci sequence: see, for example [5–7]. 
Breaking the periodicity results in more frequency components in its composition, so that the 
resulting Fourier transform or diffraction pattern yields more peaks. Generally, 
quasiperiodicity involves incommensurate periods projected from higher dimensions, 
resulting in dense, sharp features in the corresponding Fourier transform: see, for example [8–
15]. 

Although only seven apertures are used, the quasiperiodicity already introduces two new 
peaks per side in the diffraction pattern, as seen in Fig. 4. The introduction of new peaks in the 
diffraction pattern decreases the mean square error of image registration, as described in Eq. 
(2). 

 

Fig. 5. a: Electron micrograph of a metal thin film quasiperiodic aperture array generated by 
using the vertices of a Penrose tiling. b: CMOS imager sample of the resulting diffraction 
pattern. Note the high density of sharp peaks, due to the diffraction from a quasiperiodic 
structure. 

In NORIS, a two-dimensional quasiperiodic structure is required to generate the 
diffraction optical ruler. We use the quasiperiodic Penrose tiling of the plane using thin and 
thick rhombuses whereby aperture circles are placed at the vertices of the tiling [11]. The 
aperture array and the resulting diffraction pattern are shown in Fig. 5. Note the high density 
of peaks in the diffraction pattern, a result of the quasiperiodicity of the location of the 
apertures. 

3. Experimental results 

To demonstrate empirical results of NORIS, a 640 × 480, 2.2 µm pixel CMOS imager was 
mounted on a custom-made PC board, which was then attached to a piezoflexural stage. This 
commercial stage was integrated with short range, high precision capacitive sensors (nPoint 
NPXYZ100B). The stage is positioned 25.4 mm from the diffraction grating (along the 
longitudinal axis), and the imager located 50 mm from the center of the diffraction pattern 
(radial distance). The stage position measured by the capacitive sensors was compared to that 
detected by NORIS. First, a reference image of the optical ruler was sampled. Then the stage 
was moved and another image was sampled. The upsampled cross correlation between the 
reference and sample image calculates the absolute displacement of the stage. Figure 6 shows 
that over a 3 µm total displacement, NORIS demonstrated 17.2 nm mean absolute deviation. 
The bottom portion shows the residual. Figure 7 shows the stability of NORIS over 6 hours, at 
less than 20 nm. This long term stability is possible due to the atomically-based stability in the 
laser frequency. The optical ruler extends over several inches, resulting in a relative 

positioning error of 20 nm / 100 mm = 2 × 10
−7

. 
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Fig. 6. NORIS positioning errors across 3 µm displacement, compared to short range, high 
precision capacitive sensor in a piezoelectric flexural stage. 

 

Fig. 7. NORIS positioning errors across over six hours. 

4. Imager bit resolution 

Previous NORIS data has been demonstrated using a modest CMOS imager with only 8-bit 
analog to digital conversion, a quantization error of tenths of percents. It was presumed that 
such a high quantization error would result in poor sampling of the optical ruler, and therefore 
poor precision in NORIS. Therefore, a gain sweep method was used to effectively sample the 
optical diffraction ruler at 14.6 bits, an improvement of two orders of magnitude, to improve 
the sampling of the quasiperiodic diffraction pattern. 

However, we find that the precision in NORIS is very robust against high quantization 
errors. Lower bit resolutions are introduced by taking sampling images of the optical ruler and 
digitally sampling them at different bit resolutions. After the images are resampled at lower 
bit resolutions, they are again processed by the same cross correlation methods as before, and 
the resulting precision in NORIS can be compared at different bit resolution. 

Figure 8 shows the effect of the bit resolution of a 640 x 480 imager on NORIS precision, 
using the empirical data presented in Fig. 6. The data at 14.6 bits matches the data in Fig. 6, 
but the other data reflect decreasing imager bit resolution. Bit resolutions of 9, 8, and 6 show 
equal performance. There is a slight linear drift at 4 bit resolution, and a large deviation at 3 
bit resolution. 
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Fig. 8. Precision in NORIS affected by 640 × 480 imager bit resolution, using same data set as 
in Fig. 6. Resolution from 14.6 to 6 bits exhibit nearly identical performance. At 4 bits, a linear 
drift is induced and a large deviation is observed at 3 bit imager resolution. NORIS 
demonstrates great robustness against imager bit resolution. 

 

Fig. 9. Precision in NORIS affected by imager bit resolution as in Fig. 8, but with a reduced 
imager size of 576 x 432 pixels. Again, imager bit resolutions down to 6 exhibit the same 
precision, 4 bit resolution results in a linear drift, and finally at 3 bit resolution results in poor 
results. 

In Fig. 9, a similar set of data is shown but with a reduced imager size of 576 x 432, a 10% 
reduction in the number of pixels per side from 640 x 480. Similar NORIS precision behavior 
is observed. Nearly identical NORIS precisions are shown for bit resolutions down to 6, a 
linear drift is observed at 4 bits, and finally at 3 bits the precision is poor. However, the high 
bit resolutions show a linear drift in NORIS suggesting that while NORIS very robust against 
bit resolution, it is not robust against the number of pixels of the imager. 
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Fig. 10. Linear drift error in NORIS as the bit resolution is changed. Data shows robustness 
against orders of magnitude reduction in bit resolution, but shows significant linear drift error 
in NORIS as the number of pixels in the imager is decreased slightly. 

This is confirmed by a comparison of NORIS linear drift error due to changes in the bit 
resolution and the number of pixels of the imager. Figure 10 shows the linear drift as the bit 
resolution is changed. As shown above, the bit resolution has little effect on the NORIS 
precision at all imager sizes, down to 4 to 6 bits. However, the Figure shows that the linear 
drift in NORIS strongly affected by the number of pixels in the imager. As the number of 
pixels per side of the imager is changed, the erroneous linear drift in NORIS increases 
significantly. For every 10% decrease in the number of pixels per side of the imager, there is 
approximately a 10% increase in the linear drift error of NORIS. 

 

Fig. 11. Root mean error of NORIS about the linear drift described in Fig. 10. Again, the root 
mean error is constant through orders of magnitude reduction in bit resolution, but is sensitive 
to the number of pixels in the imager. 

Similar results are show in Fig. 11 for the effect of bit resolution on the root mean error of 
NORIS about the linear drift described in Fig. 10. As the pixel bit resolution is reduced by 
orders of magnitude, the root mean error of NORIS remains constant. However, the root mean 
error of NORIS about the linear drift increases significantly as the number of pixels in the 
imager is reduced. 

Figures 10 and 11 also show clearly that positioning errors increase as the number of 
pixels decreases. Intuitively, this is due to the decreased information regarding the image 
samples of the optical ruler. As is exploited in phase correlation methods for image 
registration, consider that the shift in the optical ruler image results in a –kx∆x-ky∆y phase 
shift between the Fourier transforms of the two images. Calculating the displacement is a 
matter of calculating this phase gradient across the images, such as by using a linear 
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regression fit. As the number of pixels increase, the wave vectors kx and ky at which this 
gradient is calculated is increased, resulting in a better approximation of the displacement 
between the two images. At higher pixel numbers the gradient is sampled at smaller and 
smaller wave vectors which approximate the gradient more poorly, which may explain the 
reason why the marginal improvement in precision get smaller for higher numbers of pixels of 
the same size. 

5. Aperture array variations 

The data in Section 3 demonstrate that NORIS can achieve 17 nm precision. The positioning 
is performed 50 mm radially away from the center of the diffraction pattern. Towards the 
outer radius of the diffraction pattern the optical intensity decreases due to the second term in 
Eq. (1), the sizes of the features increases due to the finite size of the diffraction grating, and 
eventually the diffraction pattern completely disappears due to the finite coherence of the 
laser. These effects would result in increasingly poor precision. Therefore, within this 100 mm 
region the system can position itself within 17 nm of a desired position and demonstrates high 
precision. 

Most applications of nanometrology require high precision. For example, a scanning probe 
or electron microscope would want to work within a 100 mm region of the wafer and be able 
to return precisely to the same transistor or photonic device for inspection. This affords the 
microscope a valuable capability. In most applications, the accurate distance between two 
devices is of little or no consequence. A transistor is not affected in performance if another 
transistor is 50 mm or 50 mm + 10 nm away in distance. The capability for a microscope or 
lithography tool to return consistently to the same device which is a valuable capability. Here 
we have demonstrated that NORIS can return to an arbitrary position, such as at a specific 
transistor, to within 17 nm anywhere within a 100 mm region. 

However, wafer-scale positioning accuracy would provide two benefits. First, some 
current or future applications may require accurate wafer-scale positioning, such as for 
fabricating high coherence wafer-scale photonic systems. Second, accuracy is the conduit for 
nanometrology between tools, limited by the lowest accuracy. For example, a lithography tool 
and a microscopy tool must have enough accuracy so that transistors placed 50 mm + 10 nm 
apart can be fabricated and inspected at that distance, relying on the agreement of that 
distance between the two tools. A simple and common method for increasing accuracy would 
be to use a traceable calibration sample to measure standard lengths using the metrology tool. 
This would not require accuracy in NORIS per se, but with the high precision already 
demonstrated provides a straightforward way of matching the accuracy of the calibration 
sample, and would calibrate NORIS for long range accuracy. However, while it is an 
increasingly difficult challenge, inherent accuracy in the system would provide a valuable 
capability. 

The basis for the stability for NORIS comes from the atomically stable frequency of the 
laser beam that is diffracted. By using saturation spectroscopy, for example, the laser 
frequency can be stabilized down to parts per billion which corresponds to nanometers over a 
six or twelve inch wafer. However, the accuracy of the positioning depends on the accuracy of 
the optical ruler. The image sampling clearly cannot directly calculate an image registration 
spanning wafer scale distances, unless the imager itself was that large. Instead, the imagers 
can be locally positioned accurately to the optical ruler and rely on the precise location of 
optical features within that optical ruler. This can be accomplished by using a set of calculated 
rather than sampled reference images of the optical ruler. Since the optical ruler diffracts a 
parts-per-billion stabilized laser, the stability of the optical wavelength should not be a 
significant problem. 

There are number of factors that could affect the accuracy of the optical ruler. The angle of 
the incoming laser beam should remain perpendicular to the diffraction pattern. For example, 
the current 1 m path length of the incoming laser requires that the beam point within hundreds 
of nanometers of alignment. The size of the pixels in the imager would have to be known very 
well. 

#133016 - $15.00 USD Received 10 Aug 2010; revised 8 Sep 2010; accepted 9 Sep 2010; published 16 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  20835



Here, we consider errors in the optical ruler caused by errors in the microfabricated 
aperture array. Mechanical stability data, previously and currently shown in this manuscript, 
have demonstrated that vibrational and temperature fluctuation effects are insignificant. For 
example, the aperture array is a thermally conductive thin film metal spanning only a 
millimeter. A large thermoelectric cooler can easily stabilize the temperature of such a small 
thermal load to within 0.03 °C. With thermal coefficients of expansion of parts per million 
and rigid support around structure, dynamic thermal changes are expected to remain in the 
parts or many parts per billion as required by NORIS. 

There is, however, a dependency on the resulting diffraction optical ruler due to errors in 
the actual microfabrication of the aperture array. There are many possible sources for 
microfabrication errors in the aperture array. The sizes of the holes are nonuniform due to 
slight variations in etching rates and aspect ratios, mask exposure and development, etc. 
However, the diffraction pattern is a result of the sum of the amplitudes from all apertures 
which is expected to dilute the effect of small variations in the microfabrication of the 
aperture array. In addition, the Fourier transform of incoherent changes in the aperture array 
will tend to add white noise to the diffraction pattern, i.e. raise the noise floor, rather than 
change the peak structures within the optical ruler. 

 

Fig. 12. Histogram of aperture diameter and radial positioning errors, for simulated errors of 50 
nm in microfabrication. 

To characterize the dependence of NORIS precision on variations in the aperture array, 
numerical simulations were carried out. A 780 nm optical plane wave was simulated to 
illuminate an aperture array of 9662, 3 µm holes spanning a millimeter in size placed at the 
vertices of a Penrose tiling, with a 10 µm length constant. This is the configuration shown in 
the electron micrograph in Fig. 5. The Fraunhofer diffraction at a distance of 25.4 mm is 
calculated. Sample image data sets were retrieved at a number of positions within the 
diffraction pattern, and those data sets were cross correlated to each other to calculate their 
displacement. The procedure is the same as the method used in NORIS. The calculated 
positions can be compared to their position within the diffraction pattern, which is know 
precisely by the simulation results. The aperture array is varied by both the position of the 
apertures and the diameter of the apertures, using a randomly generated normalized 
distribution. The aperture arrays were varied by their diameter and position offset of 20, 50, 
100 and 500 nm; a sample histogram for 50 nm offset is shown in Fig. 12. Note that correlated 
errors, for example if the aperture arrays were stretched by 10 percent in one direction, are not 
considered. Such as in linear encoders that are fabricated with 275 nm steps rather than 250 
nm steps, for example, unknown correlated errors are inevitably absorbed as a degradation of 
accuracy. In the case of diffraction as described by Eq. (1), errors in the scale of the aperture 
array leads to a proportional error in the scale of the optical ruler, as carried through the 
Fourier transform. 
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Fig. 13. NORIS positioning errors due to microfabrication errors. Positions are calculated by 
positioning NORIS based on image registration to error aperture array to zero error aperture 
array. Errors of up to 200 nm appear to have no impact on positioning error; a 500 nm 
fabrication error shows an effect on NORIS positioning error. As an example, image shows 
calculated diffraction pattern from 20 nm errors. 

The resulting position errors are shown in Fig. 13, using a 500 × 500, 1 µm pixel imager 
and displaced in x from 0 to 200 µm. The image shows an example calculated diffraction 
pattern from 20 nm errors. Fabrication error is added to the aperture array, then the optical 
ruler image is registered to the image from a zero error aperture array. There is an inherent 
positioning error, even at zero fabrication error. This is a result of the cross correlation method 
which upsamples the Fourier transforms of the image. This results in errors because 
upsampling does not interpolate the image exactly. Microfabrication errors up to 200 nm 
appear to have little effect on the positioning, but microfabrication errors of 500 nm have a 
noticeable effect on NORIS precision. Therefore, the quasiperiodic diffraction optical ruler is 
robust to random errors in the aperture array. In addition to the demonstrated high precision, 
NORIS is accurate and thus can use a numerically calculated optical ruler to determine its 
position, and can tolerate large variations in the aperture array over time. 

5. Conclusion 

The current limit of precision could be caused by a number of direct or propagated sources of 
error. Directly, vibrations in the stage or optics cause an equivalent error in the positioning. 
Although the optical table is very stable, the PC board which holds the imager is mechanically 
the least stable and can decrease the precision. The thermal coefficient of expansion of 
materials used in the system such as aluminum or steel are on the order of tens of ppm per 
degree Kelvin, which could very well cause errors in positioning though the system is 
enclosed in an acoustically and thermally isolated miniature clean environment. Other sources 
of error can propagate throughout the system as proportional errors, such as laser wavelength 
error which causes a change in the scaling of the optical ruler. The laser wavelength stability 

of 1.5 × 10
−8

 is the base error of the system, and each component or source of error is added 

until the resulting 2 × 10
−7

 that we observe. The optical processing also affects the precision, 
such as if the individual pixel gain or analog to digital conversion are unstable, which in turn 
causes errors in the cross correlation image registration. The optical ruler has a spatial 
bandwidth of approximately 10 µm, for which an error of 20 nm would be a 0.1% error in the 
pixel intensity, or a substantial error of half a least significant bit on the 8-bit gain control of 
the imager. It is most likely that the current 17 nm limit we observe is due to the mechanical 
stability of the optical components in the system. For example, a four inch object which 
changes temperature by 0.1 K will increase its total length by 100 nm at 10 ppm/K, which is a 
shift of 50 nm within a 50 mm region. Further improvements will require additional work to 
stabilize the environmental sources of noise. 
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We have demonstrated the high precision and stability of NORIS, a system for parallel, 
path-independent, wafer-scale high precision nanometrology for scanning probe microscopes 
and nanoresolution stages. We have also demonstrated the robustness of the system against bit 
resolutions of the imager down to 4 bits; sensitivity of the system to changes in the number of 
pixels of in the imager; and the robustness of the system against microfabrication variations in 
its quasiperiodic aperture array. 
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