
Hardware Trojan Detection By Symmetry Breaking

In Path Delays

Norimasa Yoshimizu

NanoMason Inc.

Martinez, California 94553

Abstract— This paper discusses the detection of hardware

Trojans (HTs) by their breaking of symmetries within integrated

circuits (ICs), as measured by path delays. Typically, path delay

or side channel methods rely on comparisons to a golden, or

trusted, sample. However, golden standards are affected by inter-

and intra-die variations which limit the confidence in such

comparisons. Symmetry is a way to detect modifications to an IC

with increased confidence by confirming subcircuit consistencies

within as it was originally designed. The difference in delays

from a given path to a set of symmetric paths will be the same

unless an inserted HT breaks symmetry. Symmetry can naturally

exist in ICs or be artificially added. We describe methods to find

and measure path delays against symmetric paths, as well as the

advantages and disadvantages of this method. We discuss results

of examples from benchmark circuits demonstrating the

detection of hardware Trojans.

Keywords—hardware trojan; integrated circuits; circuit

symmetries; path delay

I. INTRODUCTION

Hardware Trojans (HTs) are malicious changes to
integrated circuits (ICs) designed to modify its behavior to the
advantage of the adversary, such as to weaken encryption, leak
information, or cause failure in designed functions.
Modifications might be induced by changing the doping [1] or
introducing additional digital and analog circuitry.

The threat of HTs is commonly attributed to the
outsourcing of IC manufacturing to foreign states, described at
least as early as 2005 [2]. HTs could be damaging to both
commercial and national security interests. Research effort into
detecting HTs has thereby grown. Side channel methods use
secondary physical measurements, such as drive current, to
infer the state of ICs and the presence of HTs [3]. Timing
methods detect HTs by their effect on path delays in an IC [4,
5]. Logic or functional testing will supply test vectors and
determine directly from the outputs whether an HT has
modified the IC’s functionality from its intended design [6].
Reviews of HTs and their detection are available elsewhere [7-
9].

The significant challenge in HT detection is the balance
between the sensitivity and speed of the method. ICs are
typically very complex and very large, in the sense of numbers
of transistors and their wired connections. However, many
effective HTs require only minimal modifications to create a
very sensitive vulnerability [1, 10]. Finding a handful of

malicious transistors in a vast ocean of circuitry is a formidable
task. Therefore, techniques must compromise between the test
sensitivity and rate.

With these balances in mind, this paper explores a path
delay method. Path delay methods will not scale up as well as
side channel methods because the former will require
partitioned regions. However, this can be counteracted by an
increased sensitivity. Commercially available time-based
measurements can be far more sensitive (e.g. short-term Allan
deviations of 10

-10
 and time resolutions into the tens of

picoseconds) whereas electrical current or power
measurements will have less precision by up to four to seven
orders of magnitude. This higher sensitivity can compensate
for a slower testing speed, and may in fact be necessary if the
HTs are small. In addition, side-channel measurements use
current which is provided throughout an entire IC. Though
parts of the IC can be selectively probed by carefully chosen
test vectors, there is a constant power consumption that raises
the background over which small effects must be detected.
Path delays can be measured as purely differences in time, and
in fact most timing measurements will improve precision at
increasing integration times. And timing methods can target
regions of the circuit which are driven by any simultaneously
timed signal, such as due to clock-driven flip-flops or nodes
with fan-out. These characteristics further increase the
sensitivity advantage of time-based methods. Therefore, we
believe delay methods to be a powerful tool in HT detection.
Any complete HT detection protocol will likely require a
combination of methodologies to test a whole IC.

This paper proposes a technique for path delay detection of
HTs. First, we are interested in further improving the
sensitivity of path delay methods. Path delay methods rely on
golden or trusted chips, against which test results are
compared. The fabrication process introduces inter-die
variations in addition to inter-die variations within the golden
chips. The variability in a group of golden chips against the
variability in the test chip affects the confidence with which a
test chip becomes cleared. Second, we are interested in
diminishing the reliance on having a golden chip. The
preparation of a golden chip would be very costly because it
would be fabricated as part of an untrusted process and require
perfect, nondestructive testing to prove that it can be trusted.
And rather than a single golden sample, a number of them
would be required to calculate the mean and variability of
parameters in order to make meaningful comparisons to test
chips.

The use of symmetries to detect HTs attempts to mitigate
these problems. The symmetry refers to different transistor-
level paths that have the same topology. For example, the same
subcircuit may have been copied to process the bits on a bus or
identical transistor paths may naturally occur. Note the
distinction between symmetric subcircuits as compared to
symmetric transistor delay path. We are referring to specific
transistor level paths and their delays: it is not necessary that
the larger logic gate structure be topologically equivalent as
well.

The measurement of symmetry by path delay occurs two

ways. Suppose logic states α1 and β1 have the same delay

paths, and separately logic states α2 and β2 have the same

delay paths. Relative to a clock edge, the delays to the α1 - β1

transition edge and to the α2 - β2 transition edge will be the

same. Or, suppose logic states α3 and β3 have the same delay

paths and there is a third logic state χ. Relative to a clock

edge, the delays to the χ - α3 transition edge and to the χ - β3
transition edge will be the same. There are some caveats and
cases, particularly of the latter, that are discussed below where
the delays may be different. The equivalent delays are possible
largely because inter-die variations affect them identically and
intra-die variations will be limited if the paths are in close
proximity. And note that this does not require a golden chip for
comparison, as the comparisons are done within the test chip
itself.

The use of self-referencing was explored in [11], which
noted that an IC will contain identical regions from a digital
logic point of view: for example, an arithmetic logic unit
containing equivalent circuitry to separately handle many bits.
However, while the same symmetries can be exploited here,
there are other symmetries that are not dependent on a signal
bus, opening up for wider applicability. Continued work in [12]
demonstrates that HTs can be detected as inconsistent power
consumption when an IC repeatedly cycles along a closed loop
in its finite state diagram but the HT, if using sequential logic,
continues to change its state and expend different energies
doing so. The authors contend, as we do, that the idea of a
golden sample should be abandoned in favor of self-
referencing methods in order to greatly increase confidence in
the presence of HTs despite growing inter- and intra-die
variations throughout smaller technology nodes. However, we
believe that time-based measurement methods will be simpler,
more sensitive, more flexible, and more targeted than digital /
side-channel methods.

This method is limited in that symmetries do not exist
everywhere in an IC. Therefore, this cannot be a complete test
for HTs. And in addition to the effort required to finding
symmetric paths, there is effort required to find the correct test
vectors in order to activate and measure desired path delays.
Like other path delay methods, scaling up to larger test regions
will be a challenge. Therefore, we believe this flexible method
serves as a rapid, highly sensitive test for HTs for large swathes
of circuitry but should be combined with other HT detection
techniques.

This paper discusses the natural existence of symmetries in
ICs, methods to find exploitable symmetries, and methods for
detecting HTs using these symmetries. We discuss some of

our results on benchmark circuits in identifying symmetric
paths as well as finding and detecting HTs. We discuss future
challenges as well.

II. DELAYS IN DIGITAL LOGIC

In order to describe delays in complementary metal oxide
semiconductor (CMOS) ICs, we first consider the case of a
simple NAND gate. In Fig. 1 we show the NAND2 circuit,
replacing the PMOS and NMOS transistors with symbols for
readability and the dot representing the output node.

Fig. 1. Two-input NAND gate, showing transistors driving the output denoted

by a dot. Note the symmetry in the AB =01 and 10 states.

Note that, like other logic gates, the NAND gate shows

symmetry in its AB = 01 and 10 states: a single PMOS driving
the output to high. The symmetry between the 01 and10 states
is a natural consequence of the commutative property of
Boolean algebra. Because the algebra makes no distinction
between the two states, the layout looks the same in order to
produce the same output. Also note that the A = 1 or B = 1
input is isolated from the output, so that any circuitry behind
that input will not affect the path delay. There is non-ideality
due to finite off resistance and subthreshold leakage currents.
This is a tool that will let us isolate symmetric delay paths from
undesired parts of the circuitry so that only the desired paths
will be included in the path delay measurement.

III. ILLUSTRATIVE EXAMPLE

We illustrate the method in a small benchmark circuit: c17
from the ISCAS-85 benchmark circuits [13]. The circuit is
shown below, composed of two outputs using six NAND gates
from five inputs.

Fig. 2. ISCAS-85 c17 circuit.

At this small scale, symmetries can be found by searching

manually through states as in Fig. 1. From the full set of states
it is evident that many of them are symmetric, among those
that drive the same and different outputs. We choose as an
illustration the states ABCDE = {01010, 01100} which
produce high and low outputs at O; and the states ABCDE =

{01001, 01000} which produce high and low outputs at P. We
label these states as α1, α2, β1, and β2, respectively. Note that
there are two symmetries: α1 is symmetric to β1 and α2 is
symmetric to β2. Therefore, we expect that the path delay
between α1 and α2 and the path delay between β1 and β2 will
be the same.

Fig. 3 shows these symmetric states. The insets show the
paths along the transistors which are on for each state. These
highlighted paths indicate the coverage of the HT detection, in
that HTs that are located at these nodes can be detected by this
scheme. These four states cover ten of the eleven nodes in the
circuit. The insets also help to visualize the gates that are
involved and their evident symmetry.

In Fig. 4 we show the clock edge at the input as well as the
α and β transitions. For comparison, also shown is another
transition (ABCDE = 11010 to 01110) which is symmetric to

none of the states in the α and β transitions. These results are
from a SPICE simulation using parameters from a 90
nanometer multiple project wafer process run. Variation is
shown as multiple transparent lines from ten other runs for
each transition. Here and throughout this paper, we added
variations of 5% standard deviation in both the width and
length of transistors, approximated based on [14-16] and for
circuitry that would be close in proximity. As expected, the
symmetric transition curves are similar. The small difference is
attributed to slight differences in transistors that are switched,
for example as discussed in the Section II above. The
equivalent path delays would be measured as shown. Also
shown are curves for a

Finally, we demonstrate the detection of some HTs. The
added HTs were designed to be cause minimal change in logic,
changing the output of only one input logic state. Their effects
were to change O to O OR D in HT1 and to change the
intermediate state at node δ to pass through an OR gate with
not D. Each changed a single output state from LOW to HIGH.
They are shown in Fig. 5.

In order to detect the HTs, we use the states described
above in Fig. 3. The result of the path delays are shown in Fig.
6. The introduction of an HT into the circuit causes the delays
α and β to become different, indicating their presence.

Note that the HTs cause a shift in the delay in one of the
paths, breaking the symmetry. If the delay paths were extended
further while preserving their symmetry, the delays would all
simply be increased by a constant amount. However, as the
total path length increases, the variation in the path delay also
increases, canonically as the square root of the length of the
path. Therefore, statistical thresholds will be required to
determine if a pair of paths has had its symmetry broken.

We also note that small differences in the transition can be
caused by the off-path transistors. For example, the transition
due to a pair of series transistors will be faster if one transistor
is already on rather than turning both on simultaneously. These
differences will affect the precision of the delay measurement
and subsequently affect the sensitivity to HTs.

Fig. 3. Symmetric states of c17. The small diagrams next to each state show,

as a thick red line, the path of on transistors that determines the net path delay.

Fig. 4. Transition between states α1 and α2, shown in red, and between states

β1 and β2, shown in blue. Due to the symmetry, the transitions delays α and β

are the same. Other transition (ABCDE = 11010 to 01110) is shown in grey

for comparison. Partially opaque lines demonstrate statistical variations of ten

simulations for each transition.

Fig. 5. Hardware Trojans introduced to c17 (Fig. 2) and tested for Hardware

Trojans using the transition states described above (Fig. 3). The hardware

Trojans are shown in red. The text underneath describes the resulting single

change in the output logic, showing the input state and change in output.

Fig. 6. Detection of Hardware Trojans of Fig. 5 using the symmetric states of

Fig. 3. The addition of an HT causes the equal α and β delays to split to

different values.

In addition, the selected transition states affect the amount

of coverage. Nodes that are used by some but not all the states
provide coverage and could indicate the presence of an HT. In
contrast if a node were used for all the states, the HT would
affect all delay times equally and show no difference.
Therefore, selecting transition states that cover the largest
number of nodes increases the probability of detecting an HT.
For example, the states in Fig. 3 cover ten of the eleven nodes
of c17. There are other symmetric states, such as those that
connect all four to the same output, which could have been
implemented with coverage as few as two nodes. Therefore it
is important consider maximizing coverage when choosing the
states.

IV. LARGER BENCHMARK CIRCUIT

We also demonstrate the detection of HTs on a larger
circuit, c432 from the ISCAS-85 benchmark circuits, which is
a 27-channel interrupt controller comprised of 160 gates [13].
We implement its model in an FPGA by using a Xilinx
synthesis tool. As in [11], the symmetry existing between bits
on a bus can be easily exploited to test for HTs. The output
N223 is one of the request pins, and its output is determined by
two, 9-bit input buses which undergo the same logic
operations.

We test our method by implementing an attempted
concealed HT. The output of one of the buses, before a final
OR gate, is passed through an AND gate along with an enable
input signal. Therefore, if the enable signal is high, the AND
gate will pass along the unperturbed output of the bus; if the
enable signal is low, the AND gate will force an output of
LOW. For these tests, the enable signal is assumed to be high
at all times. The results are shown in Fig. 7. The path delays of
two different bus bits are used. The splitting in path delays
indicates the presence of an HT, though the HT consists only
of a single enable AND gate HT that is not triggered.

We also find that symmetry exist between three unrelated
inputs: that is, inputs that are not bits on the same bus and do
not, overall, undergo the same logic operations to the output.
These input bits of three different buses pass through different
logic modules to the most significant bit of the channel request
output. Nevertheless, they exhibit symmetries in their transistor

paths. We inserted an HT similar to the enable AND gate used
above in Fig. 7. The results are shown below in Fig. 8.

Fig. 7. Detection of single enable AND gate HT in c432. Symmetric paths are

of two bits of the buses that undergo the same logic operations to the output

N223.

Fig. 8. Detection of a single AND gate HT in c432. Symmetric paths were

identified that exist through pins that undergo different logic modules to the

channel request bus.

V. CHALLENGES

As in other path-delay methods, the greatest challenges will
be in scaling up to larger test ICs.

This method requires the ability to find symmetries in
existing circuits or to generate symmetries in circuits during
design. This task can be quite complex [17], although it can be
greatly simplified in our context. The different logic
operations, such as NAND, do not overlap the others because
they do not contribute identically to a delay path as they are
often designed in CMOS. For example, the OR gate uses two
parallel NMOS transistors to ground compared to the AND
gate which uses two series NMOS transistors to ground.
Therefore, when mixed logic gates are used any two pathways
must pass through the same logic gates in the same order in
order to result with a symmetric delay path. So, symmetric
paths can be found by tracing paths from an output back to the
input pins which pass through the same logic gates.

A complete method of laying out all possible states is not
feasible when the number of input combinations reach into the
thousands or more. Instead, algorithmic methods that start from
the output and work back towards the input pins would have to
be used to track down symmetric paths. This requires

supporting tools to isolate these symmetric paths when they are
discovered. It is also possible that symmetry considerations
could be made during the design and layout phase in order to
identify them in the early stages, rather than reverse-
engineering them as we have had to do here. Symmetries that
appear in the layout can be a result of symmetries in multiple-
bit logic, apparent symmetries in the logic, or conscious design
choices such as to increase the number of logic gates to induce
symmetry in parts of the circuit.

However, as we have tried to demonstrate here, unintended
symmetries appear to naturally occur in ICs. One limit is to
consider a truth table with N input bits that has 2

N
 possible

outputs. There are a maximum of only N+1 outputs, each
having between zero and N bits designated to be high, until
symmetry will begin to appear. Symmetry will then appear: for

example, the output DCBA ∪ would show symmetries in

the circuit of two inverters and two AND gates which fan-in to
an OR gate. These symmetries evident in the truth tables lead
naturally to symmetries in the circuitry. Another example is in

Fig. 2, where the output EBCDBCP ∪= and leads to

apparent symmetries.

In addition to finding symmetries, the detection and
assertion of symmetry breaking will require statistical
considerations. As technologies reach smaller nodes, even their
intra-die variations may become overwhelming. As paths get
longer, even though the change in path delay caused by an HT
stays constant, the variation in even the nominal path delay will
increase canonically as the square root of the total length
leading to more difficult analyses of symmetry. Furthermore,
the off states become less ideal as subthreshold leakage
currents and other effects become stronger. These will allow
off-path transistors to begin to affect the path delay measured
through the desired symmetry paths.

Finally, we note that we have not considered here layout
and routing effects and how they may affects the path delay.

VI. CONCLUSION

We have described methods and principles for detecting
hardware Trojans by their breaking of symmetries in integrated
circuits, as measured by path delays. Symmetries can be found
by searching through logic states, or through the logic gate
schematics finding equivalent paths through them. In the latter
case, the delay paths are isolated by input states (such as a high
input node in NAND gates or a low input gate in OR gates).
Paths which propagate through different nodes increase the
coverage and therefore the probability of detecting an HT. This
paper provides some evidence that these desired symmetries
can occur not only due to conscious design implementation,
but also occur naturally in digital integrated circuits.

These methods can be especially powerful to increase the
sensitivity of HT detection, even at some cost in detection
speed. In addition to the high sensitivity of time-based
measurements, the use of symmetries allows one to abandon

the need for golden samples which, especially towards smaller
technology nodes, results in lower confidence due to inter-die
variability. Tools such as algorithms to find symmetric, high
coverage delay paths and test vectors which isolate them can
increase the scale of size.

REFERENCES

[1] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware Trojans,” Proceedings of the 15th Internatinal
Conference on Cryptographic Hardware and Embedded Systems
(CHES) 2013, pp. 197-214.

[2] Defense Science Board, “High performance microchip supply,” 2005.

[3] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” IEEE Symposium on
Security and Privacy (SP) 2007, pp. 296-310.

[4] S. Wei and M. Potkonjak, “Malicious circuitry detection using fast
timing characterization via test points,” Hardware-Oriented Security and
Trust (HOST) 2013, pp. 113-118.

[5] Y. Jin, Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” Hardware-Oriented Security and Trust (HOST) 2008, pp.
51-57.

[6] S. Jha and S. Jha, “Randomization based probabilistic approach to detect
trojan circuits,” 11th IEEE High Assurance Systems Engineering
Symposium (HASE) 2008, pp. 117-124.

[7] M. Beaumont, B. Hopkins, and T. Newby, “Hardware trojans –
prevention detection, countermeasures (a literature review),” DSTO-TN-
1012, 2011.

[8] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
threats and emerging solutions,” High Level Design Validation and Test
Workshop (HLDVT) 2009, pp. 166-171.

[9] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, 27 (1)
2010, pp. 10-25.

[10] J. Blömer and J.-P. Seifert, “Fault based cryptanalysis of the advanced
encryption standard (AES),” 7th Annual Conference, Financial
Cryptography (FC) 2003, pp. 162-181.

[11] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia, “Self-
referencing: a scalable side-channel approach for hardware Trojan
detection,” Proceedings of the 15th Internatinal Conference on
Cryptographic Hardware and Embedded Systems (CHES) 2010, pp.
173-187.

[12] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia,
“TeSR: a robust temporal self-referencing approach for hardware Trojan
detection,” Hardware-Oriented Security and Trust (HOST) 2011, pp. 71-
74.

[13] M. Hansen, H. Yalcin, J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering,” IEEE Design and
Test, 16 (3) 1999, pp. 72-80.

[14] B. Cline, K. Chopra, D. Blaauw, and Y. Cao, “Analysis and modeling of
CD variation for statistical static iming,” Computer-Aided Design
(ICCAD) 2006, pp. 60-66.

[15] I. Ahsan, et. al., “RTA-driven intra-die variations in stage delay, and
parametric sensitivites for 65nm technology,” VLSI Technology 2006,
pp. 170-171.

[16] P. S. Zuchowski, P. A. Habitz, J. D. Hayes, J. H. Oppold, “Process and
environmental variation impacts on ASIC timing,” Computer Aided
Design (ICCAD) 2004, pp. 336-342.

[17] D. Chai, “Circuit Symmetries in Synthesis and Verification,” 2009, UC
Berkeley, Technical Report No. UCB/EECS-2009-115

