
Hardware Trojan Detection By Symmetry Breaking 

In Path Delays 

Norimasa Yoshimizu 

NanoMason Inc. 

Martinez, California 94553 

 

 

 
Abstract— This paper discusses the detection of hardware 

Trojans (HTs) by their breaking of symmetries within integrated 

circuits (ICs), as measured by path delays. Typically, path delay 

or side channel methods rely on comparisons to a golden, or 

trusted, sample. However, golden standards are affected by inter- 

and intra-die variations which limit the confidence in such 

comparisons. Symmetry is a way to detect modifications to an IC 

with increased confidence by confirming subcircuit consistencies 

within as it was originally designed. The difference in delays 

from a given path to a set of symmetric paths will be the same 

unless an inserted HT breaks symmetry. Symmetry can naturally 

exist in ICs or be artificially added. We describe methods to find 

and measure path delays against symmetric paths, as well as the 

advantages and disadvantages of this method. We discuss results 

of examples from benchmark circuits demonstrating the 

detection of hardware Trojans. 
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I. INTRODUCTION  

Hardware Trojans (HTs) are malicious changes to 
integrated circuits (ICs) designed to modify its behavior to the 
advantage of the adversary, such as to weaken encryption, leak 
information, or cause failure in designed functions. 
Modifications might be induced by changing the doping [1] or 
introducing additional digital and analog circuitry.  

The threat of HTs is commonly attributed to the 
outsourcing of IC manufacturing to foreign states, described at 
least as early as 2005 [2]. HTs could be damaging to both 
commercial and national security interests. Research effort into 
detecting HTs has thereby grown. Side channel methods use 
secondary physical measurements, such as drive current, to 
infer the state of ICs and the presence of HTs [3]. Timing 
methods detect HTs by their effect on path delays in an IC [4, 
5]. Logic or functional testing will supply test vectors and 
determine directly from the outputs whether an HT has 
modified the IC’s functionality from its intended design [6]. 
Reviews of HTs and their detection are available elsewhere [7-
9]. 

The significant challenge in HT detection is the balance 
between the sensitivity and speed of the method. ICs are 
typically very complex and very large, in the sense of numbers 
of transistors and their wired connections. However, many 
effective HTs require only minimal modifications to create a 
very sensitive vulnerability [1, 10]. Finding a handful of 

malicious transistors in a vast ocean of circuitry is a formidable 
task. Therefore, techniques must compromise between the test 
sensitivity and rate. 

With these balances in mind, this paper explores a path 
delay method. Path delay methods will not scale up as well as 
side channel methods because the former will require 
partitioned regions. However, this can be counteracted by an 
increased sensitivity. Commercially available time-based 
measurements can be far more sensitive (e.g. short-term Allan 
deviations of 10

-10
 and time resolutions into the tens of 

picoseconds) whereas electrical current or power 
measurements will have less precision by up to four to seven 
orders of magnitude. This higher sensitivity can compensate 
for a slower testing speed, and may in fact be necessary if the 
HTs are small. In addition, side-channel measurements use 
current which is provided throughout an entire IC. Though 
parts of the IC can be selectively probed by carefully chosen 
test vectors, there is a constant power consumption that raises 
the background over which small effects must be detected. 
Path delays can be measured as purely differences in time, and 
in fact most timing measurements will improve precision at 
increasing integration times. And timing methods can target 
regions of the circuit which are driven by any simultaneously 
timed signal, such as due to clock-driven flip-flops or nodes 
with fan-out. These characteristics further increase the 
sensitivity advantage of time-based methods. Therefore, we 
believe delay methods to be a powerful tool in HT detection. 
Any complete HT detection protocol will likely require a 
combination of methodologies to test a whole IC. 

This paper proposes a technique for path delay detection of 
HTs. First, we are interested in further improving the 
sensitivity of path delay methods. Path delay methods rely on 
golden or trusted chips, against which test results are 
compared. The fabrication process introduces inter-die 
variations in addition to inter-die variations within the golden 
chips. The variability in a group of golden chips against the 
variability in the test chip affects the confidence with which a 
test chip becomes cleared. Second, we are interested in 
diminishing the reliance on having a golden chip. The 
preparation of a golden chip would be very costly because it 
would be fabricated as part of an untrusted process and require 
perfect, nondestructive testing to prove that it can be trusted. 
And rather than a single golden sample, a number of them 
would be required to calculate the mean and variability of 
parameters in order to make meaningful comparisons to test 
chips.   



The use of symmetries to detect HTs attempts to mitigate 
these problems. The symmetry refers to different transistor-
level paths that have the same topology. For example, the same 
subcircuit may have been copied to process the bits on a bus or 
identical transistor paths may naturally occur. Note the 
distinction between symmetric subcircuits as compared to 
symmetric transistor delay path. We are referring to specific 
transistor level paths and their delays: it is not necessary that 
the larger logic gate structure be topologically equivalent as 
well.  

The measurement of symmetry by path delay occurs two 

ways. Suppose logic states α1 and β1 have the same delay 

paths, and separately logic states α2 and β2 have the same 

delay paths. Relative to a clock edge, the delays to the α1 - β1 

transition edge and to the α2 - β2 transition edge will be the 

same. Or, suppose logic states α3 and β3 have the same delay 

paths and there is a third logic state χ.  Relative to a clock 

edge, the delays to the χ - α3 transition edge and to the χ - β3 
transition edge will be the same. There are some caveats and 
cases, particularly of the latter, that are discussed below where 
the delays may be different. The equivalent delays are possible 
largely because inter-die variations affect them identically and 
intra-die variations will be limited if the paths are in close 
proximity. And note that this does not require a golden chip for 
comparison, as the comparisons are done within the test chip 
itself.  

The use of self-referencing was explored in [11], which 
noted that an IC will contain identical regions from a digital 
logic point of view: for example, an arithmetic logic unit 
containing equivalent circuitry to separately handle many bits. 
However, while the same symmetries can be exploited here, 
there are other symmetries that are not dependent on a signal 
bus, opening up for wider applicability. Continued work in [12] 
demonstrates that HTs can be detected as inconsistent power 
consumption when an IC repeatedly cycles along a closed loop 
in its finite state diagram but the HT, if using sequential logic, 
continues to change its state and expend different energies 
doing so. The authors contend, as we do, that the idea of a 
golden sample should be abandoned in favor of self-
referencing methods in order to greatly increase confidence in 
the presence of HTs despite growing inter- and intra-die 
variations throughout smaller technology nodes. However, we 
believe that time-based measurement methods will be simpler, 
more sensitive, more flexible, and more targeted than digital / 
side-channel methods.  

This method is limited in that symmetries do not exist 
everywhere in an IC. Therefore, this cannot be a complete test 
for HTs. And in addition to the effort required to finding 
symmetric paths, there is effort required to find the correct test 
vectors in order to activate and measure desired path delays. 
Like other path delay methods, scaling up to larger test regions 
will be a challenge. Therefore, we believe this flexible method 
serves as a rapid, highly sensitive test for HTs for large swathes 
of circuitry but should be combined with other HT detection 
techniques.  

This paper discusses the natural existence of symmetries in 
ICs, methods to find exploitable symmetries, and methods for 
detecting HTs using these symmetries.  We discuss some of 

our results on benchmark circuits in identifying symmetric 
paths as well as finding and detecting HTs. We discuss future 
challenges as well. 

II. DELAYS IN DIGITAL LOGIC 

In order to describe delays in complementary metal oxide 
semiconductor (CMOS) ICs, we first consider the case of a 
simple NAND gate. In Fig. 1 we show the NAND2 circuit, 
replacing the PMOS and NMOS transistors with symbols for 
readability and the dot representing the output node.  

 

Fig. 1. Two-input NAND gate, showing transistors driving the output denoted 

by a dot. Note the symmetry in the AB =01 and 10 states.  

 
Note that, like other logic gates, the NAND gate shows 

symmetry in its AB = 01 and 10 states: a single PMOS driving 
the output to high. The symmetry between the 01 and10 states 
is a natural consequence of the commutative property of 
Boolean algebra. Because the algebra makes no distinction 
between the two states, the layout looks the same in order to 
produce the same output. Also note that the A = 1 or B = 1 
input is isolated from the output, so that any circuitry behind 
that input will not affect the path delay. There is non-ideality 
due to finite off resistance and subthreshold leakage currents. 
This is a tool that will let us isolate symmetric delay paths from 
undesired parts of the circuitry so that only the desired paths 
will be included in the path delay measurement.  

III. ILLUSTRATIVE EXAMPLE  

We illustrate the method in a small benchmark circuit: c17 
from the ISCAS-85 benchmark circuits [13]. The circuit is 
shown below, composed of two outputs using six NAND gates 
from five inputs.  

 

Fig. 2. ISCAS-85 c17 circuit.  

 
At this small scale, symmetries can be found by searching 

manually through states as in Fig. 1. From the full set of states 
it is evident that many of them are symmetric, among those 
that drive the same and different outputs. We choose as an 
illustration the states ABCDE = {01010, 01100} which 
produce high and low outputs at O; and the states ABCDE = 



{01001, 01000} which produce high and low outputs at P. We 
label these states as α1, α2, β1, and β2, respectively. Note that 
there are two symmetries: α1 is symmetric to β1 and α2 is 
symmetric to β2. Therefore, we expect that the path delay 
between α1 and α2 and the path delay between β1 and β2 will 
be the same.  

Fig. 3 shows these symmetric states. The insets show the 
paths along the transistors which are on for each state. These 
highlighted paths indicate the coverage of the HT detection, in 
that HTs that are located at these nodes can be detected by this 
scheme. These four states cover ten of the eleven nodes in the 
circuit. The insets also help to visualize the gates that are 
involved and their evident symmetry.  

In Fig. 4 we show the clock edge at the input as well as the 
α and β transitions. For comparison, also shown is another 
transition (ABCDE = 11010 to 01110) which is symmetric to 

none of the states in the α and β transitions. These results are 
from a SPICE simulation using parameters from a 90 
nanometer multiple project wafer process run. Variation is 
shown as multiple transparent lines from ten other runs for 
each transition. Here and throughout this paper, we added 
variations of 5% standard deviation in both the width and 
length of transistors, approximated based on [14-16] and for 
circuitry that would be close in proximity. As expected, the 
symmetric transition curves are similar. The small difference is 
attributed to slight differences in transistors that are switched, 
for example as discussed in the Section II above. The 
equivalent path delays would be measured as shown. Also 
shown are curves for a   

Finally, we demonstrate the detection of some HTs. The 
added HTs were designed to be cause minimal change in logic, 
changing the output of only one input logic state. Their effects 
were to change O to O OR D in HT1 and to change the 
intermediate state at node δ to pass through an OR gate with 
not D. Each changed a single output state from LOW to HIGH. 
They are shown in Fig. 5. 

In order to detect the HTs, we use the states described 
above in Fig. 3. The result of the path delays are shown in Fig. 
6. The introduction of an HT into the circuit causes the delays 
α and β to become different, indicating their presence.  

Note that the HTs cause a shift in the delay in one of the 
paths, breaking the symmetry. If the delay paths were extended 
further while preserving their symmetry, the delays would all 
simply be increased by a constant amount. However, as the 
total path length increases, the variation in the path delay also 
increases, canonically as the square root of the length of the 
path. Therefore, statistical thresholds will be required to 
determine if a pair of paths has had its symmetry broken. 

We also note that small differences in the transition can be 
caused by the off-path transistors. For example, the transition 
due to a pair of series transistors will be faster if one transistor 
is already on rather than turning both on simultaneously. These 
differences will affect the precision of the delay measurement 
and subsequently affect the sensitivity to HTs.  

 

 

Fig. 3. Symmetric states of c17. The small diagrams next to each state show, 

as a thick red line, the path of on transistors that determines the net path delay.  

 

 

 
Fig. 4. Transition between states α1 and α2, shown in red, and between states 

β1 and β2, shown in blue. Due to the symmetry, the transitions delays α and β 

are the same. Other transition (ABCDE = 11010 to 01110) is shown in grey 

for comparison. Partially opaque lines demonstrate statistical variations of ten 

simulations for each transition. 

 

 

 
 

 
 

Fig. 5. Hardware Trojans introduced to c17 (Fig. 2) and tested for Hardware 

Trojans using the transition states described above (Fig. 3). The hardware 

Trojans are shown in red. The text underneath describes the resulting single 

change in the output logic, showing the input state and change in output.  

 



 

Fig. 6. Detection of Hardware Trojans of Fig. 5 using the symmetric states of 

Fig. 3. The addition of an HT causes the equal α and β delays to split to 

different values.  

 
In addition, the selected transition states affect the amount 

of coverage. Nodes that are used by some but not all the states 
provide coverage and could indicate the presence of an HT. In 
contrast if a node were used for all the states, the HT would 
affect all delay times equally and show no difference. 
Therefore, selecting transition states that cover the largest 
number of nodes increases the probability of detecting an HT. 
For example, the states in Fig. 3 cover ten of the eleven nodes 
of c17.  There are other symmetric states, such as those that 
connect all four to the same output, which could have been 
implemented with coverage as few as two nodes. Therefore it 
is important consider maximizing coverage when choosing the 
states.  

IV. LARGER BENCHMARK CIRCUIT 

We also demonstrate the detection of HTs on a larger 
circuit, c432 from the ISCAS-85 benchmark circuits, which is 
a 27-channel interrupt controller comprised of 160 gates [13]. 
We implement its model in an FPGA by using a Xilinx 
synthesis tool. As in [11], the symmetry existing between bits 
on a bus can be easily exploited to test for HTs. The output 
N223 is one of the request pins, and its output is determined by 
two, 9-bit input buses which undergo the same logic 
operations.  

We test our method by implementing an attempted 
concealed HT. The output of one of the buses, before a final 
OR gate, is passed through an AND gate along with an enable 
input signal. Therefore, if the enable signal is high, the AND 
gate will pass along the unperturbed output of the bus; if the 
enable signal is low, the AND gate will force an output of 
LOW. For these tests, the enable signal is assumed to be high 
at all times. The results are shown in Fig. 7. The path delays of 
two different bus bits are used. The splitting in path delays 
indicates the presence of an HT, though the HT consists only 
of a single enable AND gate HT that is not triggered.  

We also find that symmetry exist between three unrelated 
inputs: that is, inputs that are not bits on the same bus and do 
not, overall, undergo the same logic operations to the output. 
These input bits of three different buses pass through different 
logic modules to the most significant bit of the channel request 
output. Nevertheless, they exhibit symmetries in their transistor 

paths. We inserted an HT similar to the enable AND gate used 
above in Fig. 7. The results are shown below in Fig. 8.  

 

 

Fig. 7. Detection of single enable AND gate HT in c432. Symmetric paths are 

of two bits of the buses that undergo the same logic operations to the output 

N223. 

 

 

Fig. 8. Detection of a single AND gate HT in c432. Symmetric paths were 

identified that exist through pins that undergo different logic modules to the 

channel request bus. 

 

V. CHALLENGES  

As in other path-delay methods, the greatest challenges will 
be in scaling up to larger test ICs.  

This method requires the ability to find symmetries in 
existing circuits or to generate symmetries in circuits during 
design. This task can be quite complex [17], although it can be 
greatly simplified in our context. The different logic 
operations, such as NAND, do not overlap the others because 
they do not contribute identically to a delay path as they are 
often designed in CMOS. For example, the OR gate uses two 
parallel NMOS transistors to ground compared to the AND 
gate which uses two series NMOS transistors to ground. 
Therefore, when mixed logic gates are used any two pathways 
must pass through the same logic gates in the same order in 
order to result with a symmetric delay path. So, symmetric 
paths can be found by tracing paths from an output back to the 
input pins which pass through the same logic gates. 

A complete method of laying out all possible states is not 
feasible when the number of input combinations reach into the 
thousands or more. Instead, algorithmic methods that start from 
the output and work back towards the input pins would have to 
be used to track down symmetric paths. This requires 



supporting tools to isolate these symmetric paths when they are 
discovered. It is also possible that symmetry considerations 
could be made during the design and layout phase in order to 
identify them in the early stages, rather than reverse-
engineering them as we have had to do here. Symmetries that 
appear in the layout can be a result of symmetries in multiple-
bit logic, apparent symmetries in the logic, or conscious design 
choices such as to increase the number of logic gates to induce 
symmetry in parts of the circuit.   

However, as we have tried to demonstrate here, unintended 
symmetries appear to naturally occur in ICs. One limit is to 
consider a truth table with N input bits that has 2

N
 possible 

outputs. There are a maximum of only N+1 outputs, each 
having between zero and N bits designated to be high, until 
symmetry will begin to appear. Symmetry will then appear: for 

example, the output DCBA ∪  would show symmetries in 

the circuit of two inverters and two AND gates which fan-in to 
an OR gate. These symmetries evident in the truth tables lead 
naturally to symmetries in the circuitry. Another example is in 

Fig. 2, where the output EBCDBCP ∪= and leads to 

apparent symmetries.  

In addition to finding symmetries, the detection and 
assertion of symmetry breaking will require statistical 
considerations. As technologies reach smaller nodes, even their 
intra-die variations may become overwhelming. As paths get 
longer, even though the change in path delay caused by an HT 
stays constant, the variation in even the nominal path delay will 
increase canonically as the square root of the total length 
leading to more difficult analyses of symmetry. Furthermore, 
the off states become less ideal as subthreshold leakage 
currents and other effects become stronger. These will allow 
off-path transistors to begin to affect the path delay measured 
through the desired symmetry paths.  

Finally, we note that we have not considered here layout 
and routing effects and how they may affects the path delay.  

VI. CONCLUSION 

We have described methods and principles for detecting 
hardware Trojans by their breaking of symmetries in integrated 
circuits, as measured by path delays. Symmetries can be found 
by searching through logic states, or through the logic gate 
schematics finding equivalent paths through them. In the latter 
case, the delay paths are isolated by input states (such as a high 
input node in NAND gates or a low input gate in OR gates). 
Paths which propagate through different nodes increase the 
coverage and therefore the probability of detecting an HT. This 
paper provides some evidence that these desired symmetries 
can occur not only due to conscious design implementation, 
but also occur naturally in digital integrated circuits. 

These methods can be especially powerful to increase the 
sensitivity of HT detection, even at some cost in detection 
speed. In addition to the high sensitivity of time-based 
measurements, the use of symmetries allows one to abandon 

the need for golden samples which, especially towards smaller 
technology nodes, results in lower confidence due to inter-die 
variability. Tools such as algorithms to find symmetric, high 
coverage delay paths and test vectors which isolate them can 
increase the scale of size.   
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